Earth Remote Sensing using Surface-Reflected GNSS Signals (GNSS-Reflectometry)

Stephen T. Lowe (JPL/Caltech)

- What is GNSS-Reflectometry (GNSS-R)?
- What measurements can GNSS-R make?
- What's currently happening in this field?

What is GNSS-Reflectometry (GNSS-R)?

Radar

- Monostatic
- Transmitter & receiver co-located (1)
- Backscatter

What is GNSS-Reflectometry (GNSS-R)?

- Bistatic Radar
 - Just radar with separate transmitter receiver (2)
 - Forward-scattering
- Power(time)
 - Shape => Roughness
 - SNR => Conductivity
 - Timing => Height

GNSS-R

- Multi-bistatic (multistatic)
- Next few years: >100 GNSS transmitters
- Dense surface coverage

Many Advantages

- Multiple, simultaneous observations
 - High spatial / temporal resolution
- Free high-quality signals
- Leveraging huge global infrastructure
- No transmitter
 - Relatively low cost
 - Constellation possibilities (CyGNSS)
- Forward scattering
- Same hardware as Radio-Occultations'

What Measurements Can GNSS-R Make?

<u>Oceanography</u>

- Surface winds (CyGNSS Mission: Cyclones)
- Mesoscale topology
- Tsunami science/warning
- Geoid / Mean Sea Surface

Land

- Soil Moisture
- Wetland Extent
- Freeze/Thaw
- Vegetation Characteristics

Cryosphere (assuming high-inclination orbit)

- Sea-Ice Extent
- Ice freeboard
- snow depth
- Ice roughness / age

Red: Demonstrated from space

Green: Future work

Mission/Satellite	Year	# Space GNSS Reflections
SIR-C	2003	2
UK-DMC	2007	22
TechDemoSat1	2015-2017	55
SMAP (GNSS-R)	2015-present	>2.3M + 2900/day
CyGNSS (8 sats)	2017-present	>125M + 0.5M/day

C. Chew et al. / Remote Sensing of Environment 198 (2017) 333-344

SMAP GNSS-R Observes Freeze/Thaw

Horizontal Polarization

Winter Summer

Vertical Polarization

Winter Summer

Winter Temp (blue frozen)

Vegetation Type

From Chew et al, Remote Sen Env 198, 2017

CyGNSS Satellite

CyGNSS: NASA Earth Venture Mission

- \$157M to study Cyclone Science
- Goal: Improved cyclone intensity forecast
- 8 small-sats
- Observe GPS L1 C/A signals after reflecting from the ocean

Observations of Hurricane Harvey Prior to Landfall on August 25, 2017

CYGNSS Level 3 gridded surface wind speed data product (v1.1) at 1300-1400 and 1400-1500 UTC on 25 Aug 2017, prior to landfall at $^{\sim}0300$ UTC on 26 Aug 2017

HydroSheds Database

CyGNSS Data

Amazon Rainforest

Summary

- GNSS-Reflectometry is a new Earth-remote sensing technique
- Beginning explosive growth: TDS-1 => CyGNSS
- Many unique advantages compared to other remote sensing techniques
 - High spatial/temporal coverage, forward scattering, RO-compatible, long-term SI-traceable signals
- Active research underway: Soil moisture, wetland extent, freeze-thaw state, sea ice extent, ocean altimetry

TechDemoSat-1 Data

- Higher power over ice leads and polynyas
- Up to 10 dB increase
- Not seen in passive microwave

- Increased P on ice edges
- Highest P intermediate sea ice conditions

Courtesy Clara Chew (UCAR)